FF2HH-6533C-R5

12-Port Sector/multibeam antenna, $4 \times 617-894 \mathrm{MHz} 65^{\circ} \mathrm{HPBW}$ and 8 x $1695-2360 \mathrm{MHz} 4 \times 33^{\circ} \mathrm{HPBW}, 5 \times$ RET

- All Internal RET actuators are connected in "Cascaded SRET" configuration
- Enhances network capacity through six sectors on high band while maintaining low band coverage layer through three sectors with only three antenna faces
- Each High Band antenna down tilt can be independently adjusted for greater flexibility in network optimization

General Specifications

Antenna Type

Band
Color
Grounding Type

Performance Note

Radome Material
Radiator Material
Reflector Material
RF Connector Interface
RF Connector Location
RF Connector Quantity, high band
RF Connector Quantity, low band
RF Connector Quantity, total

Multibeam
Multiband
Light Gray (RAL 7035)
RF connector inner conductor and body grounded to reflector and mounting bracket

Outdoor usage
Fiberglass, UV resistant
Aluminum | Low loss circuit board
Aluminum
4.3-10 Female

Bottom
8
4
12

Remote Electrical Tilt (RET) Information

RET Hardware

RET Interface
RET Interface, quantity
Input Voltage
Internal RET
Power Consumption, active state, maximum
Power Consumption, idle state, maximum
Protocol

CommRET v2
8-pin DIN Female | 8-pin DIN Male
1 female | 1 male
$10-30$ Vdc
High band (4) | Low band (1)
8 W
1 W
3GPP/AISG 2.0 (Single RET)

FF2HH-6533C-R5

Dimensions

Width	$640 \mathrm{~mm} \mid 25.197 \mathrm{in}$
Depth	$235 \mathrm{~mm} \mid 9.252 \mathrm{in}$
Length	$2438 \mathrm{~mm} \mid 95.984 \mathrm{in}$
Net Weight, antenna only	$64.5 \mathrm{~kg} \mid 142.198 \mathrm{lb}$

Array Layout

Y1 1 Y2 R1	$\mathrm{Y} 3 \quad \mathrm{Y} 4$ $\mathbf{R 2}$	Array	Freq (MHz)	Conns	RET (SRET)	AISG RET UID
		R1	617-894	1-2	1	CPxxxxxxxxxxxxxxxxR1
		R2	617-894	3-4		
		Y1	1695-2360	5-6	2	CPxxxxxxxxxxxxxxxxyY1
		Y2	1695-2360	7-8	3	CPxxxxxxxxxxxxxxxyY2
		Y3	1695-2360	9-10	4	CPxxxxxxxxxxxxxxxxY3
		Y4	1695-2360	11-12	5	CPxxxxxxxxxxxxxxxxxY4
Left ${ }_{\text {Bot }}$	Right	(Sizes of	lored boxes are no	true dep	ns of	sizes)

Port Configuration

Electrical Specifications

Impedance

FF2HH-6533C-R5

Operating Frequency Band
Polarization
Total Input Power, maximum
$1695-2360 \mathrm{MHz}$ | $617-894 \mathrm{MHz}$
$\pm 45^{\circ}$
1,000 W @ $50^{\circ} \mathrm{C}$

Electrical Specifications

Frequency Band, MHz	617-698	698-894	1695-1880	1850-1990	1920-2180	2300-2360
Gain, dBi	15.8	16.1	18.9	19.6	20	20.1
Beam Centers, Horizontal, degrees			± 27	± 27	± 27	± 27
Beamwidth, Horizontal, degrees	68	65	37	36	34	30
Beamwidth, Vertical, degrees	10.6	8.9	5.2	4.9	4.6	4.2
Beam Tilt, degrees	2-12	2-12	2-10	2-10	2-10	2-10
USLS (First Lobe), dB	17	17	17	19	19	17
Front-to-Back Ratio at $18 \mathbf{0}^{\circ}$, dB	29	32	34	37	36	35
Isolation, Cross Polarization, dB	25	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25	25
Isolation, Beam to Beam, dB			17	17	17	17
VSWR \| Return loss, dB	1.5114.0	1.5114 .0	1.5114 .0	1.5।14.0	1.5।14.0	1.5114 .0
PIM, 3rd Order, 2×20 W, dBc	-150	-153	-153	-153	-153	-153
Input Power per Port at $50^{\circ} \mathrm{C}$, maximum, watts	250	250	200	200	200	200

Electrical Specifications, BASTA

Frequency Band, MHz
Gain by all Beam Tilts, average, dBi

Gain by all Beam Tilts
Tolerance, dB
Gain by Beam Tilt, average, dBi

Beamwidth, Horizontal

$\mathbf{6 1 7 - 6 9 8}$	$\mathbf{6 9 8 - 8 9 4}$	$\mathbf{1 6 9 5 - 1 8 8 0}$	$\mathbf{1 8 5 0 - 1 9 9 0}$	$\mathbf{1 9 2 0 - 2 1 8 0}$	$\mathbf{2 3 0 0} \mathbf{- 2 3 6 0}$
15.5	15.7	18.3	19.2	19.6	19.6

Tolerance, degrees
Beamwidth, Vertical
$\pm 0.7 \quad \pm$
$\pm 1 \pm 0$
Tolerance, degrees
USLS, beampeak to $\mathbf{2 0}^{\circ}$ above 16
$2^{\circ} \mid 18.3$
$6^{\circ} 118.4$
$10^{\circ} 118.2$
± 2.4

± 0.3

14

$2^{\circ} \mid 19.5$	$2^{\circ} \mid 19.6$
$6^{\circ} \mid 19.7$	$6^{\circ} \mid 19.7$
$10^{\circ} \mid 19.5$	$10^{\circ} \mid 19.5$
± 2.6	± 2
± 0.3	± 0.3
15	13

FF2HH-6533C-R5

beampeak, dB

Front-to-Back Total Power at $180^{\circ} \pm 30^{\circ}$, dB	23	23	29	30	29	29
CPR at Boresight, dB	14	15	15	18	19	19
CPR at Sector, dB	9	9				
CPR at 10 dB Horizontal Beamwidth, dB			10	12	12	10

Mechanical Specifications

Wind Loading @ Velocity, frontal

Wind Loading @ Velocity, lateral
Wind Loading @ Velocity, maximum
Wind Loading @ Velocity, rear
Wind Speed, maximum

```
1,055.0 N @ 150 km/h(237.2 lbf @ 150 km/h)
355.0 N @ 150 km/h (79.8 lbf @ 150 km/h)
1,433.0 N @ 150 km/h (322.2 lbf @ 150 km/h)
1,086.0 N @ 150 km/h(244.1 lbf @ 150 km/h)
241 km/h (150 mph)
```

Packaging and Weights
Width, packed
Depth, packed
Length, packed
Weight, gross

752 mm | 29.606 in
382 mm | 15.039 in
2590 mm | 101.969 in
87.5 kg | 192.904 lb

Regulatory Compliance/Certifications

Agency

ISO 9001:2015

Classification

Designed, manufactured and/or distributed under this quality management system

Included Products

BSAMNT-4

BSAMNT-M4

* Footnotes

Performance Note

- \quad Wide Profile Antenna Downtilt Mounting Kit for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.
- \quad Middle Downtilt Mounting Kit for Long Antennas for 2.4-4.5 in (60-115 mm) OD round members. Kit contains one scissor bracket set. Severe environmental conditions may degrade optimum performance

