HBXX-6513DS-VTM | HBXX-6513DS-A2M

4-port sector antenna, 4x 1710–2170 MHz, 65° HPBW, RET compatible

- Two DualPol® antennas under one radome
- Each antenna is independently capable of field adjustable electrical tilt
- Continuous wideband operation

This product will be discontinued on: December 30, 2025

General Specifications

Antenna Type Sector

Band Single band

Color Light Gray (RAL 7035)

Grounding TypeRF connector inner conductor and body grounded to reflector and

mounting bracket

Performance Note Outdoor usage

Radome Material PVC, UV resistant

Radiator Material Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 7-16 DIN Female

RF Connector Location Bottom

RF Connector Quantity, high band 4

RF Connector Quantity, mid band 0

RF Connector Quantity, low band 0
RF Connector Quantity, total 4

Remote Electrical Tilt (RET) Information

Model with Factory Installed AISG 2.0 Actuator HBXX-6513DS-A2M

Dimensions

 Width
 305 mm | 12.008 in

 Depth
 166 mm | 6.535 in

 Length
 695 mm | 27.362 in

 Net Weight, without mounting kit
 7.9 kg | 17.416 lb

ANDREW®
an Amphenol company

Page 1 of 3

HBXX-6513DS-VTM | HBXX-6513DS-A2M

Array Layout

Array	Freq (MHz)	Conns
B1	1710-2170	1-2
В2	1710-2170	3-4

Left Right Bottom

(Sizes of colored boxes are not true depictions of array sizes)

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1710 – 2170 MHz

Polarization ±45°

Electrical Specifications

Frequency Band, MHz	1710-1880	1850-1990	1920-2170
Gain, dBi	14.5	14.6	14.9
Beamwidth, Horizontal, degrees	67.1	65.6	63.7
Beamwidth, Vertical, degrees	14.8	14	13.4
Beam Tilt, degrees	0-12	0-12	0-12
USLS (First Lobe), dB	15	15	15
Front-to-Back Ratio at 180°, dB	30	30	30
Front-to-Back Total Power at 180° ± 30°, dB	26	27	27
CPR at Boresight, dB	22	22	22
CPR at Sector, dB	7	8	8
Isolation, Cross Polarization, dB	30	30	30
VSWR Return loss, dB	1.4 15.6	1.4 15.6	1.4 15.6
PIM, 3rd Order, 2 x 20 W, dBc	-150	-150	-150

ANDREW®

Page 2 of 3

HBXX-6513DS-VTM | HBXX-6513DS-A2M

Input Power per Port, maximum, watts 350 350

Mechanical Specifications

 Wind Loading @ Velocity, frontal
 223.0 N @ 150 km/h (50.1 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 53.0 N @ 150 km/h (11.9 lbf @ 150 km/h)

Wind Loading @ Velocity, rear 259.0 N @ 150 km/h (58.2 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 485 mm | 19.094 in

 Depth, packed
 349 mm | 13.74 in

 Length, packed
 1253 mm | 49.331 in

 Weight, gross
 17.9 kg | 39.463 lb

Regulatory Compliance/Certifications

Agency Classification

CE Compliant with the relevant CE product directives

CHINA-ROHS Below maximum concentration value

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

REACH-SVHC Compliant as per SVHC revision on www.andrew.com/ProductCompliance

ROHS Compliant UK-ROHS Compliant

Included Products

600899A-2 — Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

