

10-port Next Generation High Performance sector antenna, 2x 698–896, 4x 1695–2200 and 4x 3300-4000 MHz, 65° HPBW, 3x RETs and 2x SBTs

- Antenna optimized for higher gain with improved radiation efficiency
- Designed to reduce SUB 1 alarm triggers with pattern consistency between low band and mid hand
- Interleaved dipole technology results into an attractive, low wind load mechanical package
- Internal SBTs allow remote RET control from the radio over the RF jumper cable
- Enhanced interference mitigation for improved SINR and throughput
- Powered by CommScope's next generation high-efficiency SEED™ technology

General Specifications

Antenna Type Sector

Band Multiband

Color Light Gray (RAL 7035)

Grounding TypeRF connector body grounded to reflector and mounting bracket

Performance Note Outdoor usage

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, high band 4
RF Connector Quantity, mid band 4
RF Connector Quantity, low band 2
RF Connector Quantity, total 10

Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

Input Voltage 10-30 Vdc

Internal Bias Tee Port 1 | Port 3

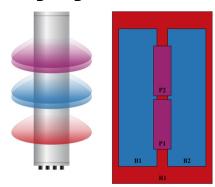
COMMSCOPE®

Internal RET High band (1) | Low band (1) | Mid band (1)

Power Consumption, active state, maximum 10 W Power Consumption, idle state, maximum 2 W

Protocol 3GPP/AISG 2.0 (Single RET)

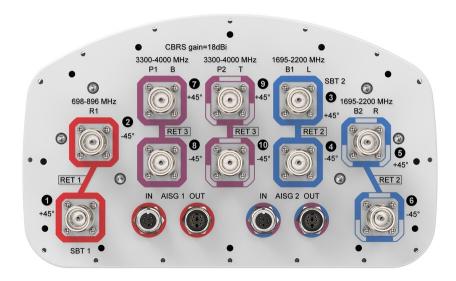
Dimensions


 Width
 301 mm | 11.85 in

 Depth
 181 mm | 7.126 in

 Length
 1828 mm | 71.969 in

 Net Weight, antenna only
 24.6 kg | 54.234 lb


Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	SBT RF PORT	SBT No.	RET UID	
R1	698-896	1 - 2	1	AISG1	1	1	CPxxxxxxxxxxxxxxR1	
B1	1695-2200	3 - 4	2	AISG2	3	2	CPxxxxxxxxxxxxxxB1	
B2	1695-2200	5 - 6	2				CPXXXXXXXXXXXXXX	
P1	3300-4000	7 - 8	_	NCCO	_	2	60	
P2	3300-4000	9 - 10	3	AISG2	3	2	CPxxxxxxxxxxxxxxP1	

(Sizes of colored boxes are not true depictions of array sizes)

Port Configuration

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2200 MHz | 3300 – 4000 MHz | 698 – 896 MHz

Polarization ±45°

Electrical Specifications

	R1	R1	B1,B2	B1,B2	B1,B2	P1,P2	P1,P2	P1,P2
Frequency Band, MHz	698-806	806-896	1695-1880	0 1850-199	0 1920–220	0 3300-355	0 3550-370	0 3700-4000
RF Port	1,2	1,2	3,4,5,6	3,4,5,6	3,4,5,6	7,8,9,10	7,8,9,10	7,8,9,10
Gain, dBi	15.1	15.3	18.2	18.5	18.7	17.7	17.8	17.7
Beamwidth, Horizontal, degrees	66	62	66	63	64	53	61	57
Beamwidth, Vertical, degrees	13.1	11.4	5.5	5	4.8	5.7	5.5	5.2
Beam Tilt, degrees	0-14	0-14	0-7	0-7	0-7	0-10	0-10	0-10
USLS (First Lobe), dB	16	15	16	16	17	16	18	18
Front-to-Back Ratio at 180°, dB	28	31	32	32	28	28	34	30
Isolation, Cross Polarization, dB	25	25	25	25	25	25	25	25

Page 3 of 4

VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-145	-145	-145
Input Power per Port at 50°C, maximum, watts	300	300	250	250	250	100	100	100

Mechanical Specifications

 Wind Loading @ Velocity, frontal
 278.0 N @ 150 km/h (62.5 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 230.0 N @ 150 km/h (51.7 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 537.0 N @ 150 km/h (120.7 lbf @ 150 km/h)

 Wind Loading @ Velocity, rear
 282.0 N @ 150 km/h (63.4 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 380 mm | 14.961 in

 Depth, packed
 295 mm | 11.614 in

 Length, packed
 1956 mm | 77.008 in

 Weight, gross
 36 kg | 79.366 lb

Regulatory Compliance/Certifications

Agency Classification

ISO 9001:2015 Designed, manufactured and/or distributed under this quality management system

Included Products

BSAMNT-4 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance NoteSevere environmental conditions may degrade optimum performance

